Journal of Organometallic Chemistry, 191 (1980) 193–204 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

¹³C-NMR-SPEKTREN UND DYNAMISCHES VERHALTEN VON OLEFIN-ISONITRIL-EISENDICARBONYL-KOMPLEXEN *

MATTHIAS MOLL *, HANS-JURGEN SEIBOLD und WERNER POPP

Institut für Anorganische Chemie der Universität Erlangen-Nürnberg, 8520 Erlangen (B.R.D.)

(Eingegangen den 15. Oktober 1979)

Summary

The ¹³C NMR spectra of the isonitrile complexes olen Fe(CO)₂CNR (R = Me, EMe₃; E = Si, Ge, Sn) with butadiene, penta-1,3-diene, cyclohexa-1,3-diene, 2,3-dimethylbutadiene, cyclohepta-1,3-diene as olefinic ligands indicate the fluctional behaviour of these compounds in solution. At low temperature there is a conformative preference in all cases so that one CO group occupies the apical position of a square pyramid whereas the isonitrile ligand together with a CO and the olefin part are in the basal positions. Depending on the various olefin ligands and the CNR groups the pseudorotation process is discussed on the basis of ΔG^{\dagger} values for the CO/CNR ligand exchange.

Zusammenfassung

Die ¹³C-NMR-Spektren der Isonitrilkomplexe olenFe(CO)₂CNR (R = Me, EMe₃; E = Si, Ge, Sn) mit den Olefinliganden Butadien, Penta-1,3-dien, Cyclohexa-1,3-dien, 2,3-Dimethylbutadien und Cyclohepta-1,3-dien zeigen, dass diese Verbindungen in Lösung alle fluktuierende Strukturen besitzen. Bei tiefen Temperaturen wird dabei in Lösung stets diejenige konformative Ligandenanordnung bevorzugt, bei der eine CO-Gruppe die apikale Position einer quadratischen Pyramide einnimmt, während der Isonitrilligand zusammen mit einem CO- und dem Olefinrest die basalen Positionen besetzen. Die Abhängigkeit des Pseudorotationsprozesses von den verschiedenen Olefinliganden und dem CNR-Resten wird auf der Basis der ΔG^{\ddagger} -Werte für den CO/CNR Austausch diskutiert.

^{*} Herrn Professor Helmut Behrens zu seinem 65. Geburtstag am 30. Mai 1980 gewidmet.

Einleitung

Dien-eisentricarbonyl-Komplexe wurden in einer Reihe von Arbeiten anhand ihrer NMR-Spektren ausführlich beschrieben [1-4]. Diese Tricarbonylverbindungen zeigen alle fluktuierendes Verhalten (Nonrigidity), das formal durch eine Pseudorotation des Fe(CO)3-Restes relativ zum Diensystem beschrieben werden kann [4-6]. Die Abhängigkeit dieser Pseudorotation von der elektronischen Struktur des Diensystems, die etwa durch Variation elektronenziehender Substituenten oder durch Heterodiene verändert werden kann, ist gut untersucht [7-12]. Dagegen sind bis auf ³¹P-NMR-Untersuchungen [3,13] keine ¹³C-NMR-Arbeiten bekannt, die den Einfluss einer $Fe(CO)_2L$ ($L \neq CO$) Gruppe auf den Mechanismus dieser Ligandenbewegung beschreiben. Dies mag unter anderem damit zusammenhängen, dass von Verbindungen des Typs olenFe- $(CO)_{2}L$ (olen = 1.3-Dien, L = einzähniger Ligand \neq CO) bisher nur P-, As-, Sbsubstituierte Derivate bekannt sind [11,13,14–16]. In neuerer Zeit sind jedoch durch Alkylierung von anionischen Cyanosalzen des Typs [olenFe(CO)₂CN]⁻ [17-19] Isonitril-substituierte Komplexe leicht zugänglich geworden [20]. In einer kürzlich erschienen Arbeit werden solche durch Alkylierung, Silylierung, Germylierung bzw. Stannylierung erhaltenen Isonitrilderivate olenFe(CO)₂CNR (olen = Butadien, Penta-1,3-dien, Cyclohexa-1,3-dien, 2,3-Dimethylbutadien, Cyclohepta-1.3-dien; R = Me, EMe_3 ; E = Si, Ge, Sn) beschrieben [21], über deren ¹³C-NMR-Spektren und dynamisches Verhalten im folgenden berichtet wird.

I. Diskussion der ¹³C-Spektren

Die ¹³C-PFT-Spektren der 18 Olefin-isonitril-dicarbonyl-Verbindungen zeigen alle neben den Signalen für die CO-Liganden (δ (CO): 223–224 ppm) und die CNEMe₃-Gruppen (δ (CN): 197.6–183.4 ppm) die charakteristischen Linien komplexgebundener Olefinliganden (Tab. 1). Sämtlichen ¹³C-NMR-Spektren dieser Verbindungen ist weiterhin eine ausgeprägte Temperaturabhängigkeit gemeinsam, wie sie bereits bei den entsprechenden Cyanosalzen [olenFe(CO)₂-CN]⁻ (olen = verschiedene 1,3-Diene) beobachtet wurde [19]. Es treten nämlich bei tiefen Temperaturen sowohl für den Fe(CO)₂CNR-Rest als auch für den Dienteil der Komplexe zusätzliche Linien auf. Allerdings konnte bei dem Methylisonitrilderivat des 2,3-Dimethylbutadiens kein auswertbares Tieftemperaturspektrum erhalten werden.

$Fe(CO)_2CNR$ -Teil ($R = Me, EMe_3$)

Während bei Temperaturen über 250 K in den Spektren der genannten Verbindungen für den Fe(CO)₂CNR-Rest (R = Me, EMe₃; E = Si, Ge, Sn) jeweils 1 CO- und 1 CN-Signal auftritt, findet man unterhalb von 230 K bei allen Komplexen eine Aufspaltung der CO und im Falle der Pentadien-Komplexe auch der CN-Signale (Tab. 1). Damit zeigen die Methyl-, Silyl-, Germyl- und Stannylisonitril-Derivate olenFe(CO)₂CNR zunächst ein den olenFe(CO)₃-Komplexen analoges Verhalten [1,4], wie es auch schon beim C₆H₈Fe(CO)₂CNEt beschrieben wurde [22]. Das Auftreten von 2 CO-Signalen gleicher Intensität in den Tieftemperaturspektren der Butadien-, Cyclohexadien-, 2,3-Dimethylbutadienund Cycloheptadien-Verbindungen lässt sich in Übereinstimmung mit den Röntgenstrukturen von C₄H₆Fe(CO)₃ [23] und C₆H₈Fe(CO)₂CNEt [22] damit erklären, dass die beiden CO-Gruppen in der quadratisch pyramidalen Umgebung des Eisens je eine basale und eine apikale Stellung einnehmen. Dabei kann jeweils das CO-Signal bei tieferem Feld (223–220, 1 ppm) dem apikal stehenden und das bei höherem Feld (217.4–214.5 ppm) dem basal stehenden CO-Liganden zugeordnet werden. Lediglich bei den Penta-1,3-dienderivaten C₅H₈-Fe(CO)₂CNMe und C₅H₈Fe(CO)₂CNEMe₃ (E = Si, Ge, Sn) beobachtet man 3 CO und 2 CN-Signale. Da das Pentadien als einziges der hier untersuchten Olefine keine Spiegelebene besitzt, sind bei tiefen Temperaturen formal zwei Isomere mit apikalem CO-Liganden möglich (Fig. 1), woraus sich für die COund CNEMe₃-Gruppen insgesamt 3 bzw. 2 magnetisch nicht äquivalente Positionen ergeben.

Auch hier erscheint eine Zuordnung des am stärksten entschirmten Signals bei 221.1-222.9 ppm zu den apikalen CO-Liganden als sinnvoll, jedoch ist es schwierig abzuschätzen, ob sich die Methylgruppe des Pentadiens stärker abschirmend auf die *trans*- oder *cis*-Position in der Basis der Pyramide auswirkt. Bemerkenswert sind in der Pentadienreihe noch die unterschiedlichen Koaleszenztemperaturen der Austauschvorgänge zwischen den beiden basalen Positionen der quadratischen Pyramide bzw. den basalen und der apikalen Position. Während der Austauschvorgang für das apical stehende CO aufgrund der Frequenzdifferenz von $\nu(CO)_{ap}$ zu $\nu(CO)_{bas}$ bereits bei 223 K zu einem scharfen Signal führt, erhält man für die CO- und CNEMe₃-Liganden in den basalen Stellungen wegen der wesentlich kleineren Frequenzdifferenz von $\nu(CO)$ CNEMe₃)_{bas(1)} zu v(CO/CNEMe₃)_{bas(11)} erst bei Temperaturen unter 210 K jeweils 2 scharfe Linien. Die relativen Intensitäten verhalten sich dabei wie $\frac{2}{1/1}\frac{1}{1} \left(\delta(CO)_{ap} : \delta(CO)_{bas(1)} : \delta(CQ)_{bas(1)} : \delta(CN)_{bas(1)} : \delta(CN)_{bas(11)}\right),$ wobei sich dieses Verhältnis beim weiteren Abkühlen jedoch als stark temperaturabhängig erweist (Fig. 2). Welches der beiden Isomeren I bzw. II (Fig. 1) hierbei bevorzugt wird, kann aus den experimentellen Daten nicht entschieden werden.

Die chemischen Verschiebungen für die CO-Resonanzsignale liegen bei sämtlichen Komplexen in dem für Eisencarbonylverbindungen typischen Bereich, wobei das gemittelte CO-Signal bei Raumtemperatur erwartungsgemäss um ca. 1-2 ppm gegenüber dem Signal für das basale CO nach tieferem Feld verschoben ist, während der Frequenzabstand zum apikalen CO stets doppelt so gross ist. Da die CN-Signale alle bei tiefem Feld auftreten ergibt sich daraus eindeutig, dass in sämtlichen Komplexen eine Isonitrilgruppierung mit einer Fe-C-N-R (R = Me, EMe₃) Verknüpfung vorliegt. Dabei ist in der Reihe vom SiMe₃-

(Fortsetzung s. S. 199)

Fig. 1. Isomere bei den C₅H₈Fe(CO)₂CNRMe₃-Komplexen bei tiefer Temperatur (R = EMe₃, E = Si, Ge, Sn).

TABELLE 1												
¹³ C-NMR-SPE Chemische Ven	KTREN VON olenFe(CO)2CNR schiebungen in nom rel. TMS. K	(R = Me,	EMe3; E :	= Si, Ge, i	in) IN TOLI Hz in Klam	JOL-d ₈ BEI marn	ZWEI VER	SCHIEDEN	EN TEMPE	RATUREN		
Olefinilgand	Komplex	T(K)	00	CN	C(2/3)	C(1/4)	EMe ₃					
C4H6	C4H6Fe(CO)2CNSIMe3	298	216.3	195.8	85.2 (D 100)	39,09 (m 160)	0.1					
-//		202	220.6 214.5	191.9	(12, 100) 85.8 84.4	(T, 160) 41.4 35.8	-0.3 -0.3					
	C4H6Fe(CO)2CNGeMe3	298	217.9	189.6	85.2	38.9	1.44					
y → 1		203	221.6 215.6	184.5	(D, 172) 86.0 84.4	(T, 167) 41.4 35.8	(4,127) 0.75					
	C4H6Fe(CO)2CNSnMe3	298	217.9	188.9	84.8	32.3	-3,45					
		201	223.0	163.4	(b, 1/3) 84.8 83.1	(T, 101) 38,9 32,8	(42, 130) —3.44					
		T(IK)	co	CN	C(3)	C(2)	C(4)	(1)	C(5)	EMe3	NMe	
C ₅ H ₈	C ₅ H ₈ Fe(CO) ₂ CNMe	253	217.5	164.2	88.7	80,1	53,9 27,151)	37.2	19.4		28,6	
ر م		207	221.6 216.1	160.2 159.3	(001, 100) 89.8 87.6	(10, 100) 81.4 79.5	(J), 104) 56,1 51,4	(1, 164) 39,9 34,2	(4, 124) 20.2		(Q, 142) 28,2	
	C ₅ H ₈ F ₀ (CO) ₂ CNSIM ₀₃	298	217.6	196.5	89.6	81.2	55,5	38,4	19.6 ^a	0.1		
2 7 7 7		203	221.1 215.6 215.1	193.8 193.3	(D, 168) 89.9 88.8	(D, 174) 81.7 80.6	(D, 161) 56,4 53,6	(T, 160) 41.0 36.1	(Q. 129) 19.7	(Q, 120) -0.3		
	C ₅ H ₈ Fe(CO) ₂ CNGeMe ₃	298	217.6	190.3	91.6 (D, 157)	82.5 (D, 172)	66.0 (D, 167)	38.3 (T, 154)	19.2 ^d (Q)	1.08 (Q. 128)		
		210	221.9 216.4 215.8	186.0 185.6	92.2 90.3	83.6 82.1	57,6 54,1	42.2 36.5	20.1	1.62		
	C ₅ H ₈ Fe(CO) ₂ CNSnMe ₃	298	218,6	190.2	89.2 (D, 163)	80.4 (D, 169)	53.8 (D.167)	37.6 (T. 155)	18.4 ^d (Q. 126)	2.8 (Q. 132)		

		202	222.9 217.3 217.0	184.6 184.2	89.5 87.1	81.2 78.9	66.1 50.9	40.2 33.8	8 	-2.6
·		T(K)	co	CN	C(2/3)	C(1/4)	C(5/6)	EMe3		
C ₆ H ₈	C ₆ H ₈ Fe(CO)2CNSiMe ₃	298	216.6	197.7	85.6 (D, 168)	60.2 (D, 156)	24.9 (T, 127)	0.1 (Q, 120)		
-		180	220.1 215.2	194.0	85.6 b	62.4 57.6	24.8	-0.1		
3	C ₆ H ₈ Fe(CO)2CNGeMe ₃	208	217.4	190.8	85.5 (D 168)	59.2 (D 156)	25.1 (T 197)	1.4 (0 199)		
>		183	221.6 216.6	186.6	86.6 ^b	63.5 66.9	26.0	1.0		
	C ₆ H ₈ Fe(CO) ₂ CNSnMe ₃	298	218.3	190.1	85.7 (T) 166)	59.1 (D 169)	26.1	-3.1	·	
		184	221.9 217.4	184.8	86.8 84.9 84.9	62.5 62.5 56.1	25.0	-3.2		
		T(K)	co	CN	C(2/3)	C(1/4)	C(5/6)	EMe ₃	NMe	
C6H10	C ₆ H ₁₀ Fe(CO)2CNMe	298	216.7	165.4	97.7 (S)	41.2 (T 166)	20.5 (0 197)		28.6 (0 145)	
	C ₆ H ₁₀ Fe(CO) ₂ CNSiMe ₃	298	216.6	197.0	98.3 98.3	42.3 (T-153)	20.9 20.9	0.4	(OLT VA)	
2 2 1		189	220.3 214.7	194.8	98.3	44.6	20.9	-0.1		
	C ₆ H ₁₀ Fe(CO) ₂ CNGeM ₀₃	298	217.4	190.7	97.7 (S. –)	41.8 (T. 156)	20.8 (0.127)	1.63 (0.129)		
4, F C		191	221.3 215.6	187.2	97.5	44.3 39.1	20.9	1.1		
	C ₆ H ₁₀ Fe(CO) ₂ CNSnMe ₃	298	218.4	189.9	97.7 (— 8)	41.8 /T 156)	21.0	-2.8		
		192	222.2 216.5	185.6	97.6	44.6 38.5	21.0	-3.0		

.

Olefinilgand Komplex $T(K)$ CO CN C_7H_{10} $C_7H_{10}Fe(CO)_2CNMe$ 29.8 216.8 166.1 $2 \int_{-1}^{1} \int_{-5}^{1} 6$ $C_7H_{10}Fe(CO)_2CNSiMe_3$ 29.8 216.0 161.0 $2 \int_{-1}^{1} \int_{-5}^{1} 6$ $C_7H_{10}Fe(CO)_2CNSiMe_3$ 29.8 216.1 197.6 $2 \int_{-1}^{1} \int_{-5}^{1} 5$ $C_7H_{10}Fe(CO)_2CNSiMe_3$ 29.8 214.8 194.5 $C_7H_{10}Fe(CO)_2CNGeMe_3$ 29.8 217.6 191.5 215.5 191.5 $C_7H_{10}Fe(CO)_2CNGeMe_3$ 29.8 217.5 186.6 215.5 191.1 $C_7H_{10}Fe(CO)_2CNSnMe_3$ 29.8 217.7 186.6 215.5 215.5 191.1											
$\begin{array}{cccc} C_7 H_{10} & C_7 H_{10} Fe(CO)_2 CNMe & 298 & 216.8 & 166.1 \\ & & & & & & & & & & & & & & & & & & $	Komplex	$T(\mathbf{K})$	00	CN	C(2/3)	C(1/4)	C(5/7)	C(8)	EMe ₃	NMe	
$ \begin{array}{c} 200 & 221.0 & 161.0 \\ 215.0 & 215.0 & 215.0 \\ \hline 3 & & & & & \\ 3 & & & & & \\ 2 & & & & & \\ 2 & & & & & &$	C7H ₁₀ Fe(C0) ₂ CNMe	298	216.8	166.1	87.6	55.8	28.8	24.8		28,8	
² ³ ⁴ ⁵ ⁵ ⁶ ⁷ H ₁₀ Fe(CO) ₂ CNSiMe ₃ 298 216.1 197.6 ^{214.8} ^{214.8} ^{214.8} ^{214.8} ^{214.8} ^{215.5} ^{194.5} ^{215.5} ^{215.5} ^{194.5} ^{215.5} ^{194.5} ^{215.5} ^{194.5} ^{216.1} ^{194.5} ^{217.5} ^{194.5} ^{217.5} ^{194.5} ^{216.1} ^{217.1} ^{218.1} 		200	221.0 215.0	161.0	(101, 10) 88.6 86.7	(IJ, 144) 58,1 52,8	(T, 126) 28,6	(T, 124) 24.8		(Q. 144) 28.6	
² $\frac{1}{4}$ 5 C7H ₁₀ Fe(C0) ₂ CNGeMe ₃ 210 220.9 194.5 214.8 214.8 214.8 214.8 214.8 214.8 215.5 215.5 215.5 215.1 191.1	C7H10Fe(C0)2CNSiMe3	298	216.1	197.6	87.9	57.0	28.8	24.7 ^a	0.1		
C7H10Fe(C0)2CNGeMe3 298 217.5 191.5 212 221.7 186.6 215.5 215.5 217.9 191.1		210	220.9 214.8	194,5	(D, 171) 89.0 87.9	(D, 139) 59.4 54.7	(T, 135) 28,6	(T, 140) 24.7	(Q, 122) -0.5		
212 221.7 186.6 215.5 C7H ₁₀ Fe(C0) ₂ CNSnMe ₃ 298 217.9 191.1	C7H10Fe(C0)2CNGeMe3	298	217.5	191.5	87.9 20.1642	56.3	28,9 (m 1.07)	25.0 ^d	1.43		
C7H10 ^{Fe} (C0)2CNSnMe ₃ 298 217,9 191.1		212	221.7 215.5	186,6	80.1 87.4	59.2 53.3	29.0	25.0	(171) 0.0		
	C7H10Fe(CO)2CNSnMe3	298	217,9	191.1	88.1 /11 150/	56.0	28.9 (m 1.07)	25.6 (m 100)	-2.7		
211 222.6 184.9 216.3		211	222.6 216.3	184,9	(1), 100) 89.4 87.2	(D, 142) 59.2 52.4	(1, 127) 28,9	(T, 120) 26.1	(4, 129) 2,8		

.

^a Tellweise vom Solvenz verdecirt, ^b Breite Signale.

•

über das GeMe₃- zum SnMe₃-Derivat stets eine Verschiebung des CN-Signals nach höherem Feld zu beobachten, was mit der zunehmenden Abschirmung durch diese Metalle zu erklären ist. Dieser Effekt führt umgekehrt zu einer geringfügigen Entschirmung der CO-Liganden, deren Signale in dieser Reihe eine Tieffeldverschiebung erfahren. Neben den ¹³CO und ¹³CN-Signalen wird der Fe(CO)₂CNR-Teil (R = Me, EMe₃) dieser Komplexe noch durch ein charakteristisches Quartett der Methylgruppen in den ¹H-gekoppelten Spektren gekennzeichnet, dessen chemische Verschiebung nahezu temperaturunabhängig ist.

Dien-Teil .

Sämtlichen Komplexen olenFe(CO)₂CNEMe₃ ist neben dem Fe(CO)₂CN-EMe₃-Rest der Dienteil der C-Atome 1—4 im olefinischen Liganden gemeinsam (Tab. 1). Die 3 acyclischen und 2 cyclischen Olefinliganden unterscheiden sich formal durch verschiedene, am Butadiengerüst gebundene gesättigte Kohlenstoffgruppierungen, die nicht an der Koordination des Metalls beteiligt sind. Die Zuordnung der einzelnen Ligandsignale konnte mit Hilfe der entkoppelten Spektren getroffen werden. Die chemischen Verschiebungen sowie die Kopplungskonstanten (Tab. 1) liegen in dem für Olefin-metallkomplexe erwarteten Bereich, wobei speziell die inneren C-Atome des Dienteiles C(2/3) stets bei tieferem Feld als die äusseren C-Atome C(1/4) erscheinen, womit sich sämtliche Verbindungen als typische Vertreter der Dien-eisencarbonyl-Komplexe erweisen.

Gegenüber den Spektren bei Raumtemperatur erhöht sich in den Tieftemperaturspektren die Anzahl der Linien für die C-Atome der Olefinliganden, dabei ist in einigen Fällen eine Verdopplung der Signale zu beobachten (Tab. 1).

Bei den Komplexen olen $Fe(CO)_2CNEMe_3$ mit Butadien, Cyclohexadien, 2.3-Dimethylbutadien und Cycloheptadien, deren Olefinliganden eine Spiegelebene besitzen, sind infolge des langsamen Austauschprozesses bei tiefen Temperaturen sämtliche Kohlenstoffatome dieser Liganden nicht mehr äquivalent und sollten demnach unterschiedliche chemische Verschiebungen zeigen. Während dies bei den Dienkohlenstoffatomen C(1/4) in allen Fällen gut zu beobachten ist, findet man bei C(2/3) nur in einigen Fällen diese Signalaufspaltung. Dagegen tritt bei den übrigen C-Atomen C(5)-C(7), die nicht an der Koordination des Eisens beteiligt sind, keine Aufspaltung der Resonanzlinien auf. Dies kann damit gedeutet werden, dass experimentell die niedrigeren Koaleszenztemperaturen für die inneren Kohlenstoffatome C(2/3) bzw. die C-Atome C(5)-C(7)bei diesen Verbindungen nur teilweise bzw. gar nicht erreicht werden. Das wird im übrigen in den limitierten Spektren der Butadien- und Cycloheptadien-Verbindungen durch die grösseren Frequenzabstände der ¹³C-Signale für die Atome C(1/4) bestätigt, da diese etwa doppelt so gross sind wie die von C(2/3)(Tab. 1).

Bei den Pentadienderivaten, deren Olefinligand keine Spiegelebene besitzt, zeigt sich in den Tieftemperaturspektren für die ¹³C-Resonanzen des Dienliganden ein den ¹³CO- und ¹³CN-Signalen analoges Verhalten. Infolge der zusätzlichen Isomeriemöglichkeit gemäss Fig. 1 sind für die 5 C-Atome des C₅H₈ insgesamt 10 Signale in den ¹³C-{¹H}-Spektren dieser Komplexe zu erwarten. Tatsächlich werden 9 Signale gefunden, wobei auch hier wahrscheinlich die Koaleszenztemperatur für C(5) nicht erreicht wurde.

Dynamisches Verhalten

In einer Reihe von Arbeiten, die in mehreren Übersichtsartikeln referiert werden [5,6], wird ausführlich über Polyen-metalltricarbonyl bzw. phosphinsubstituierte Polyen-metallcarbonyl-Komplexe und deren Umlagerungen berichtet. Dabei werden bislang für den Ligandenaustausch 3 Prozesse diskutiert, nämlich einmal eine Drehung des Dien- bzw. $Fe(CO)_3$ - oder $Fe(CO)_{3-x}L_x$ -Restes (L = P-Ligand, x = 1, 3) [1,3,32] oder eine Art Berry-Pseudorotation [2,24] bzw. Turnstile-Rotation [25]. Inwieweit das dynamische Verhalten der olenFe(CO)₂CNR-Verbindungen durch einen dieser Mechanismen zu beschreiben ist, zeigen deren ¹³C-NMR-Spektren.

Dazu wurden zunächst die ΔG^{\dagger} -Werte auf der Basis der temperaturabhängigen ¹³CO-Signale bestimmt (Tab. 2), wobei die Annahme von $\Delta S^{\dagger} = 0$ dadurch gerechtfertigt scheint, dass an ähnlichen Olefin-eisentricarbonylen eine gute Übereinstimmung zwischen den nach der Eyring-Gleichung berechneten und den näherungsweise ermittelten Aktivierungsparametern besteht [4]. Bei den Olefin-isonitril-eisendicarbonyl-Komplexen zeigen sich nur relativ geringe Unterschiede in den ΔG^{\dagger} -Werten (Tab. 2). Geht man vom Derivat mit dem einfachsten Olefingerüst, dem Butadien aus, so zeigt sich, dass zusätzliche Methylgruppen an den inneren C-Atomen C(2/3) des Diens keinen Einfluss auf ΔG^{\dagger} haben, dagegen erhöht eine Methylgruppe am äusseren C(4)-Atom, beispielsweise bei den C₅H₈-Derivaten, die Energiebarriere um ca. 1 kcal/mol. Die kleinsten ΔG^{\ddagger} -Werte von 8.4–8.9 kcal/mol ±0.3 ergeben sich bei den Cyclohexadienverbindungen, was in gutem Einklang mit dem beim $C_6H_8Fe(CO)_3$ gefundenen ΔG^{\dagger} von 9.2 kcal/mol steht [4] (Tab. 2 und 3). Daraus ergibt sich weiterhin, dass bei Ersatz einer CO-Gruppe durch ein Isonitril die Energiebarriere für den Ligandenaustausch in diesen Komplexen kaum beeinflusst wird. Weiter zeigt sich, dass SiMe₃-, GeMe₃- und SnMe₃-Reste am Stickstoff keinen merklichen Einfluss auf die ΔG^{\dagger} -Werte haben, wie aus einem Vergleich der Daten von $[C_4H_6Fe(CO)_2CN]^-$ bzw. $[C_5H_8Fe(CO)_2CN]^-$ und den entsprechenden Isonitrilverbindungen zu entnehmen ist.

Das dynamische Verhalten dieser Isonitrilkomplexe wird somit ebenso wie das von olenFe(CO)_{3-x}(PF₃)_x (x = 1, 2) [3,26,27] nicht durch sterische Effekte beeinflusst. Vielmehr spielen elektronische Wechselwirkungen eine entscheidende Rolle, wie dies bei Komplexen mit nicht konjugierten Diensystemen beobachtet wurde [2]. Mit der Elektronendichteverteilung lässt sich auch

TABELLE 2

Olefin	Komplex	<i>т</i> _с (к)	ΔG_{c}^{\ddagger} (kcal/mol)
Butadien	C ₄ H ₆ Fe(CO) ₂ CNSiMe ₃	212	9.8
	C4H6Fe(CO)2CNGeMe3	216	10.0
	C ₄ H ₆ Fe(CO) ₂ CNSnMe ₃	218	10.1
Pentadien	C ₅ H ₈ Fe(CO) ₂ CNSiMe ₃	233	10.8
	C ₅ H ₈ Fe(CO) ₂ CNGeMe ₃	235	10.9
	C ₅ H ₈ Fe(CO) ₂ CNSnMe ₃	236	11.0
Cyclohexadien	C ₆ H ₈ Fe(CO) ₂ CNSiMe ₃	180	8.4
	C ₆ H ₈ Fe(CO) ₂ CNGeMe ₃	185	8.6
	C ₆ H ₈ Fe(CO) ₂ CNSnMe ₃	193	8.9
2,3-Dimethylbutadien	C ₆ H ₁₀ Fe(CO) ₂ CNSiMe ₃	209	9.7
	C ₆ H ₁₀ Fe(CO) ₂ CNGeMe ₃	216	10.0
	C ₆ H ₁₀ Fe(CO) ₂ CNSnMe ₃	219	10.2
Cycloheptadien	C7H10Fe(CO)2CNSiMe3	223	10.3
	C7H10Fe(CO)2CNGeMe3	225	10.4
	C7H10Fe(CO)2CNSnMe3	228	10.5

KOALESZENZTEMPERATUREN DES CO-AUSTAUSCHES IN OLEFIN-ISONITRIL-EISEN-DICARBONYLEN

Olefin	Komplex	ΔG^{\ddagger} (kcal/mol)	Literatur
Butadien	C ₄ H ₆ Fe(CO) ₃	10.0	4
	C4H6Fe(CO)2PF 3	E _a 6.7	26
	C4H6Fe(CO)(PF3)2	8.8	26
	[C4H6Fe(CO)2CN]	9.1	19
Pentadien	[C ₅ H ₈ Fe(CO) ₂ CN]	10.3	19
Cyclohexadion	C6H8Fe(CO)3	9.2	4
	C6H8Fe(CO)2PF3	<7	27

AKTIVIERUNGSPARAMETER DES CO-AUSTAUSCHES EINIGER OLEFIN-EISENCARBONYL-VERBINDUNGEN

erklären, warum bei Dien-trifluorphosphin-eisendicarbonyl-Verbindungen [3] der PF₃-Ligand stets die apikale Stellung in der quadratisch pyramidalen Umgebung des Eisens einnimmt. Dagegen nehmen bei den Anionen [olenFe(CO)₂-CN]⁻ bzw. den neutralen Komplexen olenFe(CO)₂CNR (R = Et [22], EMe₃) die CN⁻-bzw. CNR-Gruppen stets eine basale Position ein. Sowohl nach der Polaritätsregel [28,29] als auch nach MO-Rechnungen von Hoffman et al. [30,31] erwartet man für pentakoordinierte d^8 -Metall-Komplexe mit quadratisch-pyramidaler Geometrie, dass σ -Donorliganden (D) die basalen Positionen besetzen. Dagegen sollten σ -Acceptoren (A) apikal stehen, da das HOMO-Orbital solcher ML₅-Systeme eine hohe Elektronendichte in der *z*-Achse besitzt:

Nachdem des σ -Donatorvermögen in der Reihe PF₃ < CO < CNR < CN⁻ zunimmt, ist leicht zu erkennen, dass Olefin-isonitril-eisendicarbonyl-Verbindungen in Lösung eine konformative Ligandenanordnung mit basal stehendem Isonitril bevorzugen, wie dies auch im Festzustand zu beobachten ist [22]. Aus den ¹³C-NMR-Spektren der Pentadienderivate C₅H₈Fe(CO)₂CNEMe₃ geht hervor, dass der Ligandenaustausch in Lösung scheinbar so erfolgt, dass die cyclische Anordnung der 2 CO- und des CNEMe₃-Liganden im Fe(CO)₂CNEMe₃-Teil des Komplexes erhalten bleibt.

In Fig. 3 sind dafür drei mögliche Ligandenaustausch-Mechanismen gezeigt. Demnach wird sowohl bei der Berry-Pseudorotation (BPR) als auch bei der Turnstile-Rotation (TR) (Fig. 3a) bzw. der Rotation des $Fe(CO)_2CNEMe_3$ -Restes relativ zum Dienteil (Fig. 3b) ein Übergangszustand durchlaufen, bei dem das Diensystem in der quadratisch-pyramidalen Ligandenordnung formal eine Drehung um 180° ausgeführt hat. Die ¹³C-Spektren der hier diskutierten

TABELLE 3

Isonitril-Komplexe geben jedoch keinen Hinweis auf einen solchem Übergangszustand mit apikal stehendem Isonitril.

Am Beispiel der Pentadienderivate zeigt sich, dass für den CO/CNEMe₃-Ligandenaustausch ein BPR-Mechanismus deshalb unwahrscheinlich ist, weil dabei 2 trigonal-bipyramidale Übergangszustände durchlaufen werden, die für 1,3-Diene aufgrund der dabei auftretenden Winkeldeformationen ungünstig sind [2] (Fig. 3a). Damit ist das dynamische Verhalten dieser Olefin-isonitril-eisendicarbonyl-Komplexe in Lösung am besten durch einen (2 + 3)TR-Mechanismus bzw. eine Drehung der beiden Molekülfragmente, des Dien oder des Fe-(CO)₂CNR-Teiles relativ zueinander, zu beschreiben.

Experimentelles

Die ¹³C-NMR-Spektren (25.154 MHz) wurden mit einem JOEL JNM-PS 100-PFT-Spektrometer mit Nicolet 1080-Rechner aufgenommen. Es wurden jeweils zwischen 1000–2000 scans akkumuliert bei 90° Anregung (18 μ s) mit

Fig. 3. Isomerisierungsmechanismen bei den $C_5H_8Fe(CO)_2CNEMe_3$ -Derivaten: (a) Berry-Pseudorotation (BPR) bzw. Turnstile-Rotation (TR); (b) Drehung des Fe(CO)_2CNEMe_3-Restes relative zum Dienteil.

8–10 sec Pulsabstand. Die Temperaturmessung erfolgte mit einem externen Thermoelement, wobei der Messfehler $\pm 2^{\circ}$ C beträgt. Die Isonitrilkomplexe olenFe(CO)₂CNR (olen = C₄H₆, C₅H₈, C₆H₈, C₆H₁₀, C₇H₁₀; R = Me, EMe₃; E = Si, Ge, Sn) wurden auf dem in der erwähnten Arbeit beschriebenen Wege dargestellt [12].

Dank

Wir danken Herrn Prof. Dr. H. Behrens für die Bereitstellung von Institutsmitteln und Herrn Dr. P. Hofmann, Institut für Organische Chemie der Universität Erlangen-Nürnburg, fur hilfreiche Diskussionen.

Literatur

- 1 C.G. Kreiter, S. Stüber und L. Wackerle, J. Organometal. Chem., 66 (1974) C49.
- 2 L. Kruczynski und J. Takats, J. Amer. Chem. Soc., 96 (1974) 932.
- 3 M.A. Busch und R. Clark, Inorg. Chem., 14 (1975) 226.
- 4 L. Kruczynski und J. Takats, Inorg. Chem., 15 (1976) 3140.
- 5 J.W. Faller, Advan. Organometal. Chem., 16 (1977) 211.
- 6 L.M. Jackman und F.A. Cotton, Dynamic Nuclear Magnetic Resonance Spectroscopy, Academic Press 1975, S. 377 und S. 489.
- 7 N.S. Nametkin, S.P. Gubin, A.I. Nekhaev und V.D. Tyurin, J. Organometal. Chem., 114 (1976) 299.
- 8 A.J. Pearson, Aust. J. Chem., 29 (1976) 1679.
- 9 D.H. Gibson und Tek-sing Ong, J. Organometal. Chem., 155 (1978) 221.
- 10 D. Leibfritz und H. tom Dieck, J. Organometal. Chem., 105 (1976) 255.
- 11 A. Vessieres und P. Dixneuf, J. Organometal. Chem., 108 (1976) C5.
- 12 A. Vessieres, D. Touchard und P. Dixneuf, J. Organometal. Chem., 118 (1976) 93.
- 13 T.H. Whitesides und R.A. Budnik, Inorg. Chem., 14 (1975) 664.
- 14 R. Edwards, J.A.S. Howell, B.F.G. Johnson und J. Lewis, J. Chem. Soc. Dalton, (1974) 2105.
- 15 A. Reckziegel und M. Bigorgne, J. Organometal. Chem., 3 (1965) 341.
- 16 G. Cardaci und G. Concetti, J. Organometal. Chem., 90 (1974) 49.
- 17 H. Behrens und M. Moll, Z. Anorg. Alig. Chem., 416 (1975) 193.
- 18 H. Behrens, M. Moll, W. Popp und P. Würstl, Z. Naturforsch. B, 32 (1977) 1227.
- 19 M. Moll, H. Behrens und W. Popp, Z. Anorg. Allg. Chem., 458 (1979) 202.
- 20 H. Behrens, M. Moll und P. Würstl, Z. Naturforsch. B, 31 (1976) 1017.
- 21 H. Behrens, H. Seibold und M. Moll, J. Organometal. Chem., im Druck.
- 22 H. Behrens, G. Thiele, A. Pürzer, P. Würstl und M. Moll, J. Organometal. Chem., 160 (1978) 255.
- 23 O.S. Mills und G. Robinson, Acta Cryst., 16 (1963) 758.
- 24 R.S. Berry, J. Chem. Phys., 32 (1960) 953.
- 25 P. Gillespie, P. Hoffmann, H. Klusacek, D. Marquarding, S. Pfohl, F. Ramirez, E.A. Tsolis und I. Ugi, Angew. Chem., 83 (1971) 691.
- 26 J.D. Warren und R.J. Clark, Inorg. Chem., 9 (1970) 373.
- 27 J.D. Warren, M.A. Busch und R.J. Clark, Inorg. Chem., 11 (1972) 452.
- 28 R.J. Gillespie, J. Chem. Educ., 47 (1970) 18.
- 29 E.L. Muetterties, W. Mahler und R. Schmutzler, Inorg. Chem., 2 (1963) 613.
- 30 A.R. Rossi und R. Hoffmann, Inorg. Chem., 14 (1975) 365.
- 31 T.A. Albright, P. Hofmann, und R. Hoffmann, J. Amer. Chem. Soc., 99 (1977) 7546.
- 32 F.A. Van-Catledge, S.D. Ittel und J.P. Jesson, J. Organometal. Chem., 168 (1979) C25.